"Measurements of the $t\bar{t}$ Production Cross-Section at the Tevatron Run II CDF Experiment Using B-Tagging" Henri Bachacou UC Berkeley / LBNL DPF 2004, UC Riverside #### The CDF Detector Upgrade - Most of the detector has been upgraded. - Main upgrade: new Silicon Vertex Detector (larger coverage) - 7 double-sided layers. - 1 single-sided layer on beam pipe (not used here). - 90 cm long. (instead of 4 layers of 50 cm in Run I) # Topology and Selection of "Lepton+Jets" $t\bar{t}$ Events #### • Decay chain: - − Both top quarks decay to W+b. - $-\mathsf{W} \to q\bar{q}$. - $W \rightarrow l\nu_l \ (l=e \text{ or } \mu).$ - Branching ratio $\approx 30\%$: large B.R., and reasonable background #### Signature and selection: - 1 High p_T lepton: > 20 GeV lsolated: $I^{0.4} < 10\%$ - High Missing E_T : > 20 GeV - 4 jets: require ≥ 3 jets of $E_T > 15$ GeV - 2 B-jets, can be tagged by reconstructing secondary vertices, or identifying soft muons: require ≥ 1 tagged jet ### **Overview of the Analyses** - I will show results from 4 similar analyses. - ullet All analyses share the same lepton ID, jet and missing E_T selection. - Differ in b-tagger and signal extraction technique. - 2 B-Taggers: #### Secondary Vertex Tagger: - 1) Evaluation of background and event counting. - 2) Using the double-tag sub-sample. - 3) Kinematic fit to extract the signal fraction. #### Soft Muon Tagger: 4) Evaluation of background and event counting. #### Secondary Vertex B-Tagging Algorithm Take advantage of the long life-time of B hadrons: $$c\tau \approx$$ 450 μm - Secondary Vertex algorithm. - Select good quality tracks with large impact parameter. - Try to reconstruct a vertex. - Tag vertices with large (transverse) decay length significance: ### **Secondary Vertex B-Tagging Efficiency** Use sample of semi-leptonic decay b-jets as a control sample to normalize the MC to data: $$\frac{\epsilon_B^{\text{data}}}{\epsilon_B^{\text{MC}}} = 81 \pm 7 \%$$ - Error dominated by statistics, and understanding of control sample Heavy Flavor content. - Check in multi-jet events the E_T dependence of the b-tagging efficiency, as well as the mistag rate of the algorithm. - Efficiency for tagging at least one jet in a $t\bar{t}$ event (I+ \geq 3 jets, incl. data-MC scaling): $$\epsilon_{\geq 1\,tag}^{t\bar{t}} = 53\pm 4\%$$ ## Measurement with Secondary Vertex B-Tagging (I) #### Method: • Simple counting analysis: $$\sigma_{t\bar{t}} = \frac{N_{t\bar{t}}}{\mathcal{L}} = \frac{N_{obs} - N_{bkd}}{A_{t\bar{t}}\epsilon_{t\bar{t}}^{tag}\mathcal{L}}$$ - ullet N_{obs} : Number of observed events - ullet Number of expected background events - $A_{tar t}\cdot\epsilon_{tar t}^{tag}$: Acceptance x b-tag efficiency = fraction of produced tar t events that are actually detected - L : Integrated Luminosity - In order to increase sensitivity, reject background by using the total (transverse) energy in the event: - $H_T =$ Scalar Sum of Jets E_T , Lepton p_T , Missing E_T - Requiring $H_T > 200$ GeV rejects > 1/3 of background, keeping 96% of $t\bar{t}$ signal. #### **Backgrounds** - Key issue of this analysis: Understanding the W+jets sample composition - We use both data and MC to evaluate the backgrounds. #### • $Wb\bar{b}, Wc\bar{c}, Wc$: Monte Carlo provides Heavy Flavor fraction of W+jets, normalization from data • $Wq\bar{q}$ (mistag): Mistag rates measured in multi-jet control sample - QCD (multi-jets): W faked either by fake lepton, or semileptonic B decay Use non-isolated lepton sample - Single Top, WW, WZ, ZZ: from MC ## Measurement with Secondary Vertex B-Tagging: - \bullet Analysis based on 162 pb^{-1} accumulated between Feb. 2002 and Sep. 2003. - 48 tagged events with 3 or more jets and $H_T > 200 \text{GeV}$ (57 without H_T cut). $$\sigma_{t\bar{t}} = 5.6^{+1.2}_{-1.0}(\mathrm{stat.})^{+1.0}_{-0.7}(\mathrm{syst.})$$ pb | Syst. | Err on $\sigma_{tar{t}}$ | |------------|--------------------------| | Acceptance | 10% | | B-tagging | 8.6% | | Luminosity | 6% | | Bgd | 4.4% | # Measurement of $\sigma_{t\bar{t}}$ with double-tag events - Look at the sub-sample of events with 2 tagged jets. - Very pure signal: S/B=9 - Interesting check of the B content of W+jets sample. - 8 candidates → dominated by statistics. $$\sigma_{t\bar{t}} = 5.4 \pm 2.2 \pm 1.1 \text{ pb}$$ - 2-jet events: $\leq 2\sigma$ excess - But not seen in the single-tag sample # Measurement with Secondary Vertex B-Tagging, Using a Kinematic Fit - ullet Uses the same secondary vertex tagger, and same sample (but no H_T cut). - ullet Fit the E_T distribution of the leading jet to extract the fraction of $tar{t}$ events. - This variable is both sensisitive and well-understood. - Avoids evaluating the background contributions. Background shape from 0-tag data - → does not rely on Monte Carlo (complementary method) Background template: #### Signal template (Herwig): # Measurement with Secondary Vertex B-Tagging, Using a Kinematic Fit - Result based on 162 pb^{-1} . - 57 candidates. - The fit gives a $t\bar{t}$ fraction of: $0.67^{+0.13}_{-0.16}$ consistent with previous analysis. - Cross-section: $$\sigma_{t\bar{t}} = 6.0^{+1.5}_{-1.8}(\mathrm{stat.}) \pm 0.8(\mathrm{syst.})$$ pb ullet Cross-check: measurements with other kinematic variables, such as second leading jet, or sum of two leading jets E_T give consistent results. # Soft Muon B-Tagging Algorithm - Identify muons coming from B hadron semileptonic decays. - Match tracks in drift chamber with segments in muon chambers. - Likelihood fit based on muon system information only. - Efficiency measured from J/ψ , Z^0 samples. Main uncertainty due to higher track occupancy in $t\bar{t}$ events than in control sample. - Fake rate determined from $\gamma+$ jets control sample, parametrized in η , ϕ , and p_T : Average fake rate = 0.7% - Actual efficiency is lowered by the semi-leptonic decay branching ratio: - Efficiency to tag at least one jet in a $t\bar{t}$ event: $$\epsilon = (14 \pm 0.3^{+0}_{-1.1})$$ % for 3-jet events $\epsilon = (16 \pm 0.3^{+0}_{-1.3})$ % for \geq 4-jet events #### Measurement with Soft Muon Tagger - Test of the Heavy Flavor properties of the $t\bar{t}$ sample. - Same counting method as shown before with Sec. Vec algorithm. - Lower efficiency → poorer statistics, but larger data sample (no silicon detector required) - Backgrounds are evaluated with same methods: dominated by mistags and QCD - 20 candidates in 194 pb^{-1} of data. $$\sigma_{t\bar{t}} = \frac{N_{obs} - N_{bkd}}{\epsilon_{t\bar{t}}\mathcal{L}} = 4.2^{+2.9}_{-1.9}(\text{stat.}) \pm 1.4(\text{syst.}) \text{ pb}$$ #### **Conclusion** - $\sigma_{t\bar{t}}$ has been measured with significantly larger statistics than in Run I, at a new center-of-mass energy ($\sqrt{s}=1.96$ TeV): - So far, results are consistent with a Standard Model $t\bar{t}$ signal with $m_t \approx 175 \text{GeV}$ ($\sigma_{t\bar{t}}^{SM} = 6.7^{+0.7}_{-0.9} \text{ pb}$): $m_t=175$ - Publication in preparation. - Looking forward to more data... #### Top Production Cross Sections with B-Tagging at CDF II # Background Summary Sec. Vertex (backup) | Background | W+1 jet | W+2 jets | W+3 jets | $W+\geq$ 4jets | |--|------------------|----------------|----------------|----------------| | Events before tagging | 15314 | 2448 | 179 | 91 | | mistags | 40.6 ± 4.9 | 16.8 ± 2.2 | 3.2 ± 0.5 | 2.3 ± 0.4 | | $Wbar{b}$ | 21.2 ± 7.6 | 14.1 ± 4.7 | 1.7 ± 0.6 | 1.2 ± 0.5 | | $Wcar{c}$ | 10.7 ± 4.7 | 6.1 ± 2.4 | 0.6 ± 0.3 | 0.4 ± 0.2 | | $Wb\bar{b}$, $Wc\bar{c}$, mistags (Method 2) | 72.5 ± 13.2 | 37.0 ± 7.5 | 5.6 ± 1.0 | 3.8 ± 0.8 | | Wc | 37.7 ± 12.3 | 9.2 ± 3.4 | 0.8 ± 0.3 | 0.3 ± 0.1 | | $WW/WZ/ZZ$, $Z \to \tau\tau$ | 2.3 ± 0.5 | 2.6 ± 0.5 | 0.3 ± 0.1 | 0.08 ± 0.06 | | $non ext{-}W$ | 26.7 ± 2.8 | 12.5 ± 1.9 | 2.5 ± 0.5 | 11.9 ± 0.4 | | single top | 2.7 ± 0.4 | 4.7 ± 0.7 | 0.8 ± 0.1 | 0.2 ± 0.03 | | Total | 141.8 ± 18.9 | 66.0 ± 8.9 | 10.0 ± 1.2 | 6.3 ± 0.9 | | Corrected Total | 141.8 ± 18.9 | 66.0 ± 8.9 | 13.8 ± 2.0 | | | Observed positive tags | 160 | 73 | 21 | 27 | # Soft Muon Tagger results (backup) #### Results | Background | W + 1 jet | W + 2 jets | W + 3 jets | W +≥ 4 jets | W+≥ 3 jets | |--|------------------|-----------------|-----------------|-------------------|-----------------| | Events before tagging | 18314 | 2889 | 226 | 111 | 337 | | Fake, Wbb, Wcc | 115.9 ± 11.6 | 41.2 ± 4.1 | 6.4 ± 0.6 | 4.3 ± 0.4 | 10.7 ±1.1 | | Wc | 10.4 ± 2.9 | 4.1 ± 1.3 | 0.4 ± 0.1 | 0.12 ± 0.05 | 0.55 ± 0.18 | | WW, WZ, ZZ, $Z \rightarrow \tau^+\tau^-$ | 1.13 ± 0.17 | 1.36 ± 0.07 | 0.18 ± 0.03 | 0.04 ± 0.01 | 0.20 ± 0.02 | | non-W | 21.1 ± 9.9 | 8.1 ± 3.9 | 1.5 ± 0.8 | 0.7 ± 0.5 | 2.4 ± 1.2 | | Drell-Yan | 3.1 ± 0.6 | 0.64 ± 0.27 | 0.18 ± 0.14 | 0.0 ± 0.0 | 0.18 ± 0.14 | | Single-Top | 0.51 ± 0.04 | 0.95 ± 0.06 | 0.15 ± 0.01 | 0.036 ± 0.003 | 0.19 ± 0.01 | | Total Background | 152.2 ± 15.5 | 56.3 ± 5.9 | 8.9 ± 1.0 | 5.2 ± 0.7 | 14.2 ± 1.6 | | Corrected Background | | | 11.59±1.5 | | 11.59±1.5 | | $t\bar{t}$ expectation | 0.36 ± 0.09 | 3.0 ± 0.5 | 5.6 ± 0.9 | 8.1 ± 1.8 | 13.7 ± 2.7 | | Total Background plus $t\bar{t}$ | 152.5 ± 15.5 | 59.3 ± 5.9 | 25.3±3.1 | | 25.3 ± 3.1 | | Tagged Events | 139 | 48 | 13 | 7 | 20 | >=3 jets bin $$\sigma_{t\bar{t}} = 4.2^{+2.9}_{-1.9} \text{ (stat.) } \pm 1.4 \text{ (sys.)pb}$$